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Abstract A class of general transformation methods are proposed to convert a
nonconvex optimization problem to another equivalent problem. It is shown that
under certain assumptions the existence of a local saddle point or local convexity of
the Lagrangian function of the equivalent problem (EP) can be guaranteed. Numerical
experiments are given to demonstrate the main results geometrically.
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1 Introduction

We consider a constrained nonconvex optimization problem with the following form:

(P) :

⎧
⎨

⎩

min f0(x)
s.t. fi(x) ≤ bi, i = 1, . . . , m,
x ∈ X,

where fi : Rn → R, i = 0, . . . , m, are twice continuously differentiable functions and
X is a nonempty subset of Rn. The Lagrangian function corresponding to Problem
(P) is:

L(x, λ) = f0(x)+
m∑

i=1

λi[fi(x)− bi], λ = (λ1, . . . , λm) ≥ 0.
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It is well known that Lagrangian function plays an important role in many
optimization problems such as the development of duality theory which is the foun-
dation of primal-dual methods. So many researchers have concentrated on exploit-
ing the properties of Lagrangian function. In our paper, the following contents
about two aspects are studied. One is about the local saddle point of L(x, λ); the
other is about the local convexity of L(x, λ). As for the first aspect, we know that
the condition that the pair (x∗, λ∗) becomes a local saddle point of L(x, λ) is the
inequality

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) for all x ∈ Nx∗
⋂

X λ ≥ 0, (1.1)

holds where Nx∗ is a neighborhood of x∗. However, (1.1) does not always hold for
many nonconvex problems, thus the existence of a local saddle point is not guar-
anteed (see Example 4.1) on many occasions. For the second aspect, local duality
theory for problem(P) has been developed under a basic local convexity assump-
tion on L(x, λ). As shown in [1, 2], a crucial condition to apply the local duality
theorem at x∗ is that the Hessian matrix of Lagrangian function ∇2L(x∗, λ∗) should
be positive definite. But lots of nonconvex problems do not satisfy the
requirement. For example the Lagrangian function of linearly constrained concave
programing and indefinite quadratic programing do not satisfy the local convexity
requirement.

Recently, some transformation schemes have been adopted to transform Problem
(P) into another equivalent problem whose Lagrangian function has the proper-
ties desired. For example, in [3], a special convexification method was proposed
for Problem (P) by using p-power transformation to derive an equivalent form,
and a local saddle point result under some reasonable assumptions is obtained.
Subsequently, another convexification method was presented in [4] by using partial
p-power transformation to Problem (P), i.e., applying the p-power only to the con-
straint functions, and under assumptions that are weaker than those in [3], the same
result holds. In addition, the same p-power and partial p-power formulations were
adopted to derive the equivalent problems in [5], and the paper proved that under
certain assumptions the Hessian matrix of the Lagrangian function of the equivalent
problem (EP) becomes positive definite in a neighborhood of a local optimal point
of the primal problem. However, the restrictive conditions under which the men-
tioned transformations can be successfully done limit the range the problems they can
tackle.

The main purpose of this paper is to present a class of general transformation
methods including the methods in [3–5] as special cases, then for the EP derived,
under certain assumptions, we can obtain a local saddle point result and prove that
the Lagrangian function of the equivalent problem is locally convex. This paper not
only generalizes the results obtained in [3–5], but also expands considerably the class
of nonconvex problems for which some important optimization theories such as local
dual search methods can be guaranteed.

This paper is organized as follows: in Sect. 2, we propose a class of convexification
methods for Problem (P) to derive an EP. Then in Sects. 3 and 4 a local saddle point
result is stated, and some sufficient conditions that guarantee the local convexity of
the Lagrangian function are presented. Thereafter some relevant corollaries follow.
Furthermore, numerical experiments are presented to interpret the main results of
this paper in Sect. 5. Finally in Sect. 6 the conclusion is given.
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2 A class of general transformation methods

Consider the following transformation of the objective function and constraint func-
tions of Problem (P):

fip(x) = ψip(fi(x)), i = 0, . . . , m,

where ψip: Zip → R, in which Zip ⊆ R and fi(X) ⊆ Zip, i = 0, 1, . . . , m, and p > 0 is a
parameter.

We further assume that ψip(y), i = 0, 1, . . . , m, have the following properties:

(1) ψip(y) ∈ C2(R), i = 0, 1, . . . , m.
(2) ψip(y), i = 0, 1, . . . , m, are strictly monotonously increasing functions, which

means ψ ′
ip(y) > 0.

(3) There exists a Nx∗ such that, for N > 0, there is a p0 satisfying
ψ ′′

0p

ψ ′
0p

> −N

when p > p0, for x ∈ Nx∗
⋂

X, where ψ ′′
0p and ψ ′

0p denote
d2ψ0p(y)

dy2 |y=f0(x) and

dψ0p(y)
dy |y=f0(x), respectively, for simplicity.

(4) For x ∈ Nx∗
⋂

X, limp→+∞
ψ ′′

ip

ψ ′
ip

= +∞, i = 1, . . . , m, where ψ
′′
ip and ψ ′

ip repre-

sent
d2ψip(y)

dy2 |y=fi(x) and
dψip(y)

dy |y=fi(x), respectively, for simplicity.

In the remarks of Sect. 4, examples of admissible functions are given.
Then Problem (P) could be transformed into an EP which reads:

(EP) :

⎧
⎨

⎩

minψ0p(f0(x)),
s.t.ψip(fi(x)) ≤ ψip(bi), i = 1, 2, . . . , m,
x ∈ X.

The Lagrangian function associated with Problem (EP) is:

Lp(x,µ) = ψ0p(f0(x))+
m∑

i=1

µi[ψip(fi(x))− ψip(bi)], (2.1)

where p > 0 and µi ≥ 0, i = 1, . . . , m. And the Hessian matrix of Lp(x,µ) could be
written as:

∇2Lp(x,µ) = ψ
′′
0p∇f0(x)∇f0(x)T

+ψ ′
0p

⎛

⎝
∑

i∈J(x)

ψ
′′
ip

ψ ′
ip
λi∇fi(x)∇fi(x)T + ∇2L(x, λ)

⎞

⎠ . (2.2)

3 Local saddle point result

Definition 3.1 Let S be a nonempty set in Rn and x∗ ∈ clS. T(x∗) is called the tangent
cone of S at x∗ when it is the set of all directions d such that

d = lim
k→+∞

λk(xk − x∗),
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where λk > 0, xk ∈ S, for each k and limk→+∞ xk = x∗. More properties of tangent
cone are given in [6].

Definition 3.2 A nonempty set X is called locally convex near x∗, if there is a neigh-
borhood Nx∗ of x∗ such that X

⋂
Nx∗ is convex.

Suppose that there exist x∗ ∈ X and λ∗ ∈ Rm+ such that
[

∇f0(x∗)+
m∑

i=1

λ∗
i ∇fi(x∗)

]T

d ≥ 0, ∀d ∈ T(x∗), (3.1a)

m∑

i=1

λ∗
i [fi(x∗)− bi] = 0, (3.1b)

where T(x∗) is the tangent cone of X at x∗.

Let

J(x∗) = {i : λ∗
i > 0, i = 1, . . . , m},

N(x∗) = {d ∈ Rn : ∇f0(x∗)Td = 0 and ∇fi(x∗)Td = 0, i ∈ J(x∗)},
M̂(x∗) = T(x∗)

⋂
N(x∗).

Then we have the following theorem:

Theorem 3.1 Suppose that x∗ is feasible to Problem (P) and J(x∗) �= ∅, X is locally
convex near x∗, there exists a λ∗ ∈ Rm+ satisfying (3.1) and the Hessian matrix of
Lagrangian function of Problem (P) associated with the λ∗

∇2L(x∗, λ∗) = ∇2f0(x∗)+
∑

i∈J(x∗)
λ∗

i ∇2fi(x∗) (3.2)

is positive definite on M̂(x∗). Then there is a p1 such that the Lagrangian function of
EP defined in (2.1) has a local saddle point (x∗,µ∗

p) when p ≥ p1 where µ∗
p ∈ Rm+ .

Proof Since Problem (P) and (EP) are equivalent and x∗ is feasible to problem(P),
then by (2), we have

ψip(fi(x∗)) ≤ ψip(bi), i = 1, . . . , m. (3.3)

For any p > 0, define µ∗
p ∈ Rm+ as

µ∗
ip =

⎧
⎪⎨

⎪⎩

ψ
′
0pλ

∗
i

ψ
′
ip

, i ∈ J(x∗),

0, otherwise.

(3.4)

From (3.1b) and (3.4), we get

µ∗
ip(ψip(fi(x∗))− ψip(bi)) = 0, i = 1, . . . , m. (3.5)

By (2.1), (3.3), and (3.5), we obtain

Lp(x∗,µ∗
p) = ψ0p(f0(x)) ≥ Lp(x∗,µ)

= ψ0p(f0(x))+
m∑

i=1

µi[ψip(fi(x))− ψip(bi)], (3.6)
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where µi ≥ 0, i = 1, . . . , m. If X
⋂

Nx∗ = {x∗}, by (3.6) the result already holds in
this case.

In the following, we will show that the result still holds when X
⋂

Nx∗ �= {x∗}.
By (2.1) and (3.4), we obtain

∇Lp(x∗,µ∗
p) = ψ ′

0p∇f0(x∗)+
∑

i∈J(x∗)
µ∗

ipψ
′
ip∇fi(x∗). (3.7)

Using (3.1a), (3.4), and (3.7), we get

∇Lp(x∗,µ∗
p)

Td ≥ 0, d ∈ T(x∗). (3.8)

Now we prove that there exists a p1 > 0 such that when p > p1 we can find some
δp > 0 satisfying

Lp(x∗,µ∗
p) < Lp(x,µ∗

p), x ∈ X
⋂

O(x∗, δp) ⊆ X
⋂

Nx∗ and x �= x∗, (3.9)

where O(x∗, δp) ≡ {x ∈ Rn, ‖x − x∗‖ < δp} and µ∗
p ∈ Rm+ defined in (3.4).

Suppose contrary to the result, i.e. there is a sequence {xp} ⊂ X with xp → x∗ such
that

Lp(xp,µ∗
p) ≤ Lp(x∗,µ∗

p).

Then it follows that

0 ≥ Lp(xp,µ∗
p)− Lp(x∗,µ∗

p)

= ∇Lp(x∗,µ∗
p)

T(xp − x∗)+ 1
2
(xp − x∗)T∇2Lp(ξp,µ∗

p)(xp − x∗), (3.10)

where ξp ∈ O(x∗, ‖xp − x∗‖) and ξp → x∗, as p → +∞.
Dividing both sides of (3.10) by ‖xp − x∗‖2 and let

dp = (xp − x∗)/‖xp − x∗‖, (3.11)

we obtain

0 ≥ ∇Lp(x∗,µ∗
p)

Tdp/‖xp − x∗‖ + 1
2

dT
p ∇2Lp(ξp,µ∗

p)dp . (3.12)

Observe that dp ∈ Sn, where Sn denotes the unit sphere in Rn. By the compactness
of Sn , we let dp → d as p → +∞. Thus combining (3.11) with the definition of T(x∗),
we have

d ∈ T(x∗) and d �= 0. (3.13)

Since X is locally convex near x∗, thus we get

dp ∈ T(x∗), for p large enough. (3.14)

By (2.2) and (3.7), we rewrite (3.12) as

0 ≥
[

∇f0(x∗)+
m∑

i=1

λ∗
i ∇fi(x∗)

]T

dp/‖xp − x∗‖ + 1
2

ψ
′′
0p

ψ ′
0p
(�f0(ξp)

Tdp)
2

+ 1
2

dT
p �2 L(ξp, λ∗)dp + 1

2

∑

i∈J(x∗)
λ∗

i

ψ ′′
ip

ψ ′
ip
(�fi(ξp)

Tdp)
2.
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By (3), for N > 0, there exists a p′
0 such that when p > p′

0 we have

0 ≥
[

∇f0(x∗)+
m∑

i=1

λ∗
i ∇fi(x∗)

]T

dp/‖xp − x∗‖ − 1
2

N(�f0(ξp)
Tdp)

2

+ 1
2

dT
p �2 L(ξp, λ∗)dp + 1

2

∑

i∈J(x∗)
λ∗

i

ψ ′′
ip

ψ ′
ip
(�fi(ξp)

Tdp)
2. (3.15)

Clearly �f0(ξp)
Tdp and dT

p �2 L(ξp, λ∗)dp have finite limit as p → +∞, and by (4),
(3.1a) and (3.14) for p large enough, [∇f0(x∗) + ∑m

i=1 λ
∗
i ∇fi(x∗)]Tdp/‖xp − x∗‖ and

λ∗
i
ψ ′′

ip

ψ ′
ip
(∇fi(ξp)

Tdp)
2, i ∈ J(x∗) are nonnegative.

In order to complete the proof, we consider the following two cases.

Case 1 d ∈ N(x∗).

In this case, if there exists some index i0 ∈ J(x∗) satisfying

(∇fi0(x
∗)Td)2 > 0, (3.16)

then we have

lim
p→+∞(∇fi0(ξp)

Tdp)
2 = (∇fi0(x

∗)Td)2 > 0. (3.17)

Moreover, by (3.15) and (3.1a), we have

− N(�f0(ξp)
Tdp)

2 + dT
p �2 L(ξp, λ∗)dp ≤ 0. (3.18)

However, by (3.17) and (4), we get

lim
p→+∞ λ∗

i0

ψ ′′
i0p

ψ ′
i0p
(�fi0(ξp)

Tdp)
2 = +∞,

which means that by making p appropriately large, we can obtain a contradiction to
(3.18).

If there is no i0 ∈ J(x∗) satisfying (3.16), then we must have

∇f0(x∗)Td �= 0, ∇fi(x∗)Td = 0, i ∈ J(x∗). (3.19)

By (3.1a), (3.13), and (3.19), we have
[

∇f0(x∗)+
m∑

i=1

λ∗
i ∇fi(x∗)

]T

d = ∇f0(x∗)Td > 0.

Thus we get

lim
p→+∞

[

∇f0(x∗)+
m∑

i=1

λ∗
i ∇fi(x∗)

]T

dp/‖xp − x∗‖ = +∞. (3.20)

Then, we can obtain a contradiction by making p appropriately large in (3.15). There-
fore, (3.9) holds when d ∈ N(x∗).

Case 2 d ∈ N(x∗).
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In this case, by (3.13), we get

d ∈ M̂(x∗). (3.21)

Moreover, from (3.15), it is easy to get

dT
p �2 L(ξp, λ∗)dp − N(�f0(ξp)

Tdp)
2 +

∑

i∈J(x∗)
λ∗

i

ψ ′′
ip

ψ ′
ip
(�fi(ξp)

Tdp)
2 ≤ 0, (3.22)

Then, let p → +∞ in (3.22), and we get

d
T∇2L(x∗, λ∗)d ≤ 0. (3.23)

The combination of (3.21) and (3.23) contradicts the positive definiteness assump-
tion of the Hessian matrix in (3.2). Thus (3.9) is true in this case.

Therefore, we prove (3.9) holds. By (3.6) and (3.9), we get the conclusion and
complete the proof.

4 Convexification for nonconvex optimization problem

In this section, we assume that x∗ ∈ X and λ∗ ∈ Rm+ satisfy

�f0(x∗)+
m∑

i=1
λ∗

i � fi(x∗) = 0, (4.1a)

m∑

i=1
λ∗

i [fi(x∗)− bi] = 0 (4.1b)

and let

M(x∗) = {d ∈ Rn : ∇fi(x∗)Td = 0, i ∈ J(x∗)}.
Note that if x∗ is an interior point of X, then (3.1) and (4.1) are equivalent and
M̂(x∗) = M(x∗).

From (4.1a) and (2.1), we obtain

∇Lp(x∗,µ∗
p) = 0,

where µ∗
p is defined as (3.4).

Now we present some results about the local convexity of the Lagrangian function
given in (2.1).

Theorem 4.1 Suppose that x∗ and λ∗ satisfy (4.1) where x∗ ∈ X and λ∗ ∈ Rm+ . Further
we assume that J(x∗) �= ∅ and the Hessian matrix in (3.2) is positive definite on M(x∗),
then there is a p1 such that the Hessian matrix is positive definite when p > p1, where
µ∗

p is given by (3.4).

Proof Suppose contrary to the result, i.e. there exists a sequence {dp}+∞
p=1 ⊆ Sn such

that

dT
p �2 Lp(x∗,µ∗)dp ≤ 0, (4.2)
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where Sn denotes the unit sphere in Rn. By the compactness of Sn, there exists a
convergent subsequence of {dp}+∞

p=1 ⊆ Sn. Without loss of generality, we assume that

it is {dp}+∞
p=1 itself and limp→+∞ dp = d.

Thus, from (2.2) and (4.2), we have

ψ ′
0p

{
ψ ′′

0p

ψ ′
0p
(�f0(x∗)Tdp)

2 + dT
p �2 L(x∗, λ∗)dp +�i∈J(x∗)λ

∗
i

ψ ′′
ip

ψ ′
ip
(�fi(x∗)Tdp)

2

}

≤ 0.

Then we can prove Theorem 4.1 by the similar way used in the proof of Theorem
3.1. Therefore, Theorem 4.1 holds.

Corollary 4.1 Suppose that x∗ and λ∗ satisfy the conditions in Theorem 4.1, and x∗
is feasible to Problem (P), then there is a p1 such that x∗ is a strictly local minimum
solution of Lp(x,µ∗

p) when p > p1, where µ∗
p is given by (3.4).

Proof The result could be obtained directly from Theorem 4.1. ��
Corollary 4.2 Let x∗ and λ∗ satisfy the conditions in Corollary 4.1, then there exists a
p1 such that (x∗,µ∗

p) is a local saddle point of Lp(x,µ) when p > p1, where µ∗
p is given

by (3.4).

Proof By Theorem 4.1 and Corollary 4.1, we get the conclusion.

Define the Lagrangian dual function for problem EP as

max θp(µ)

s.t. µ ≥ 0,

where

θp(µ) = min
x∈Nx∗

Lp(x,µ).

Then we get the following corollary.

Corollary 4.3 Let x∗ and λ∗ satisfy the conditions in Corollary 4.1, then there exists a
p1 > 0 such that the Lagrangian dual problem has a local solution µ∗

p given by (3.4)
when p > p1 and further we have Lp(x∗,µ∗

p) = θp(µ
∗
p).

Proof By Corollary 4.1 and the definition of θp(µ), in some neighborhood of x∗, we
have

θp(µ
∗
p) = min

x∈Nx∗
Lp(x,µ) = Lp(x∗,µ∗

p). (4.3)

From (3.4), µ∗
p is a feasible solution of the Lagrangian dual function of Problem EP.

Further, by Corollary 4.2, we get that (x∗,µ∗
p) is a local saddle point of Lp(x,µ). Thus

we have

Lp(x∗,µ∗
p) = ψ0p(f0(x∗))+

m∑

i=1

µ∗
ip[ψip(fi(x∗))− ψip(bi)]

≥ Lp(x∗,µ) = ψ0p(f0(x∗))+
m∑

i=1

µi[ψip(fi(x∗))− ψip(bi)], (4.4)

holds locally, where µi ≥ 0, i = 1, . . . , m. Then we have
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ψip(fi(x∗)) ≤ ψip(bi), i = 1, 2, . . . , m (4.5)

otherwise (4.4) would be violated by making the corresponding µi appropriately
large. Thus, x∗ is a feasible solution of Problem EP. By (3.4), (4.3), and (4.5) we get
the conclusion and complete the proof. ��
Remark 4.1 If we setψip(y) = yp, i = 0, . . . , m, it is easy to verify thatψip(y) satisfy
properties (1)–(4). And the equivalent problem can be written as

min f p
0 (x),

s.t. f p
i (x) ≤ bp

i , i = 1, . . . , m,
x ∈ X.

(4.6)

Note that (4.6) is exactly the transformation proposed in [3]. Moreover, different from
the assumptions in [3], the regularity of x∗ is not required in Theorems 3.1 and 4.1.
Thus our results can be extended to the problems in which equality and inequality
constraints are involved.

Remark 4.2 Let ψ0p(y) = y and ψip(y) = yp, i = 1, . . . , m. Observe that properties
(1)–(4) are also satisfied and Problem (P) could be transformed into

min f0(x),
s.t. f p

i (x) ≤ bp
i , i = 1, . . . , m,

x ∈ X.
(4.7)

Note that (4.7) is exactly the transformation proposed in [4]. Thus the main results
obtained in [4] could be viewed as special cases of this paper.

Remark 4.3 Let ψ0p(y) = y and ψip(y) = epy, i = 1, . . . , m. Clearly ψip(y), i =
0, . . . , m, have properties (1)–(4), then Problem (P) could be transformed into the
following equivalent form

min f0(x),
s.t. epfi(x) ≤ epbi , i = 1, . . . , m,

x ∈ X
(4.8)

(4.8) is the transformation proposed in [7]. And the result in [7] is a special case of
Corollary 4.2.

Remark 4.4 We can derive other types of transformations which are different from
those proposed in previous papers by constructing many specific function forms pos-

sessing properties (1)–(4). For example, each of functions −e− y
p , eyp

(y > 0), lnp(y+k)
(k should be chosen to ensure (y + k) > 1), and (1 + x

p )
pk

(k ≥ 2) could be used
as ψ0p(y) and the latter three could also be used as ψip, i = 1, . . . , m, where k is an
integral number.

5 Numerical experiments

In this section, we give three examples to demonstrate Theorems 3.1 and 4.1 geomet-
rically. The transformation we use in each example is different from those proposed
before. More specifically, in Example 1, we use a specific transformation to guarantee
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Fig. 1 Contours of the Lagrangian function L(x, λ) for Problem (1P) near (x∗, λ∗)

the existence of a local saddle point. In Examples 2 and 3, convexification transfor-
mations are applied to ensure the local convexity of the Lagrangian function.

Example 5.1 Consider the following problem

(1P) :

⎧
⎪⎨

⎪⎩

min f0(x) = x + 1
x − 1

s.t. f1(x) = x ≤ 0,
x ∈ X = {x ∈ R : x < 1}.

The Lagrangian function of Problem (1P) is

L(x, λ) = x + 1
x − 1

+ λx. (5.1)

Figure 1 shows contours of L(x, λ). It is easy to verify that x∗ = 0 and λ∗ = 2 satisfy
the conditions in Theorem 3.1.

It is necessary to point out that (x∗, λ∗) is not a local saddle point of the Lagrangian
function of Problem (1P). Suppose the contrary, then we have

L(0, 2) ≤ L(x, 2), x ∈ Nx∗
⋂

X,

where Nx∗ is a neighborhood of x∗. In this example it is clearly that Nx∗
⋂

X ⊃ {0}.
From (5.1), we get −1 ≤ x + 1

x − 1 + 2x. Since x ∈ X, then we have

x2 ≤ 0, x ∈ Nx∗
⋂

X,
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Fig. 2 Contours of the Lagrangian function L2(x,µ) for Problem (1EP) near (x∗,µ∗
2)

which is a contradiction. And we set ψ0p(y) = y and ψ1p = e(y+1)p . Then Problem
(1P) is equivalent to the following problem:

(1EP) :

⎧
⎪⎪⎨

⎪⎪⎩

min x + 1
x − 1

s.t. e(x+1)p ≤ e,

x ∈ X = {x ∈ R : x < 1}.

From (3.4), we have µ∗
p = 2

pe and LP(x,µ) = x + 1
x − 1 + µ(e(x+1)p − e). By calculation,

we get that when p = 2, (x∗,µ∗
2) is a local saddle point of L2(x,µ). Figure 2 depicts

contours of L2(x,µ) in the neighborhood of (x∗,µ∗
2).

Example 5.2 Consider the following problem

(2P) :

⎧
⎪⎪⎨

⎪⎪⎩

min f0(x) = (4 − x1)(4 − x2)

s.t. f1(x) = 2x1 − x2 ≤ 2,
f2(x) = x2 ≤ 2,
x ∈ X = [1, 4]2.

Note that x∗ = (2, 2) and λ∗ = (0.5, 0.125) is one solution to (4.1). It can be verified
that M(x∗) = {0} and the Hessian of the Lagrangian function is

∇2L(x∗, λ∗) =
(

0 1
1 0

)

,
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Fig. 3 Contours of the Lagrangian function L(x, λ∗) for Problem (2P)

which is indefinite. Let ψ0p(y) = −e− y
p and ψip = epy, i = 1, 2, then Problem (2P) is

transformed into the following EP:

(2EP) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min −e(−
(4−x1)(4−x2)

p )

s.t. ep(2x1−x2) ≤ e2p,
epx2 ≤ e2p,
x ∈ X = [1, 4]2.

By (3.4), we have µ∗
p = ( 1

p2 e(−2p−4/p), 3
p2 e(−2p−4/p)), and

Lp(x,µ∗
p) = −e− (4−x1)(4−x2)

p + 1

p2 e(2px1−px2−2p−4/p) + 3

p2 e(px2−2p−4/p) − e−4/p.

By direct calculation, we get

∇2Lp(x∗,µ∗
p) = e−4/p

(
4 − 4/p2 −4/p2 + 1/p − 2

−4/p2 + 1/p − 2 4 − 4/p2

)

.

Observe that when p = 2, µ∗
2 = {6.25 × 10−4, 1.9 × 10−3}, and ∇2L2(x∗,µ∗

2) =
(

3e−2 −2.5e−2

2.5e−2 3e−2

)

is positive definite. Figures 3 and 4 depict contours of L(x, λ∗) for

Problem (2P) and L2(x,µ∗
2) for 2EP, respectively.
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Fig. 4 Contours of the Lagrangian function L2(x,µ∗
2) for Problem (2EP)

Example 5.3 Consider the following problem:

(3P) :

⎧
⎨

⎩

min f0(x) = 4 − x1x2
s.t. f1(x) = x1 + 4x2 ≤ 1,
x ∈ X = [0, 1]2,

x∗ = (0.5, 0.125)T and λ∗ = 0.125 satisfy (4.1). It can be verified that M(x∗) = {d ∈
R2|d1 + 4d2 = 0} and the Hessian matrix of the Lagrangian function at (x∗, λ∗) is

∇2L(x∗, λ∗) =
(

0 −1
−1 0

)

,

which is an indefinite matrix and positive definite on M(x∗).
Set ψ0p = y and ψ1P = (1 + y

p )
p2

, then Problem (3P) is equivalent to the following
problem:

(3EP) :

⎧
⎪⎪⎨

⎪⎪⎩

min 4 − x1x2

s.t.
(

1 + (x1 + 4x2)
p

)p2

≤ (1 + 1
p )

p2
.

x ∈ X = [0, 1]2.

By (3.4) we have µ∗
p = 1

8p(1 + 1/p)p
2−1

, then we get

Lp(x,µ∗
p) = 4 − x1x2 + 1

8p(1 + 1/p)p
2−1

[(

1 + x1 + 4x2

p

)p2

− (1 + 1/p)p
2

]

.
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The Hessian matrix of Lp(x,µ) at (x∗,µ∗
p) is

∇2L(x∗,µ∗
p) =

(
(p2 − 1)(1 + 1/p)p

2−2 4(p2 − 1)(1 + 1/p)p
2−2

4(p2 − 1)(1 + 1/p)p
2−2 16(p2 − 1)(1 + 1/p)p

2−2

)

.

Note that when p=3, µ∗
3 = 0.004, and ∇2L3(x∗,µ∗

3) =
(

0.25 0
0 4

)

, which is positive

definite.
Figures 5 and 6 depict contours of L(x, λ∗) for Problem (3P) and L3(x,µ∗

3) for 3EP,
respectively.

6 Conclusions

In this paper, we propose a general class of transformation methods including the
transformations presented in [3–5,7] as special cases. Then under certain assump-
tions, we prove the local saddle point result and the local convexification of the the
Lagrangian function. Hence, the main results obtained in this paper could be viewed
as an expansion of the results in [3–5,7]. The important aspects of this paper lie not
only in theory but also in practice. Since it provides us with more specific transforma-
tions to obtain an EP with better properties, we can tackle some practical problems
that can not be done with by using the transformations presented in [3–5,7], or can
do with them more efficiently.

However, about the transformation method, there are still problems that need to be
pursued. The most important and challenging one among them may be how to select
the most suitable transformation function for a given function of interest. Besides,
how to identify the lower bound of p that has to be used in the transformation and
how the value of p affects the equivalent function obtained are also important topics.
It is evident that the solving of these problems would be very helpful in practice. But
until now few papers have addressed these problems systematically. So we suggest
that more efforts should be devoted to them in the future.
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